
Bit Counting in the TDB User Interface
J. Linnemann Feb 18, 2006

Revised July 6, 2006

I have been asked to specify L2 and L3 bit counting updates to the report interface. Right now we have
tl_index counting (input triplet line counting), and L1 bit counting. The index counting was a good
approximation to L3 bit counting before L2 branching became possible.

Now, the reporting interface should mimic the xml/xmlgen in understanding how the bits are assigned. For
Trigger Lists of version 14 or earlier (no L2 branching, no Oring), the existing numbering is adequate.

For Trigger Lists of V15 or higher come in 2 forms, based on Or Markers, or based on L2Groups. This
proposal would leave the Index number to stand in approximately for the L3 bit count. For Or Marker V15
triggers the index number will change faster than the L3 bit count, since the index increments for lines which
generate no L3 bit assignments—those lines with L2Or markers). However, the index matches L3 bit count
(as accurately as it does for V14 and lower lists) for V15 triggers written in terms of L2Groups without Or
Markers.

The proposal is to replace the present pair of numbers in the first column
 Index (L1bit)
with 3 numbers:
 Index (L1bit, last_L2bit)
Where
Index remains one per line, no matter what
L1bit count remains as now, and
 increments whenever a new bit is intended to be assigned (i.e. knows about L2 branching)

last_L2bit count:
 increments whenever a non-null L2 script exists: i.e. whenever a new L2 bit is assigned

If a line consumes more than one L2 bit (for nontrivial L2 Groups), the count increments by the
number used; if none is defined (for example for a L2_OR_MARKER), the L2 bit count does not
increment.

Somewhere on the Report page there should be a note indicating the meaning of the 2 numbers in the
parentheses.

For an Or maker example (ignoring the TriggerName)
 26 (7,10) … … …

27 (8, 11) L1 L2a *Or
28 (8, 12) L1 L2b *Or
29 (8, 12) L1 *Or L3

Notice that the Index increments 3 times although only one L3 bit is consumed

For the equivalent L2Group example, where L2Ga contains scripts {L2a, L2b}
 26 (7,10) … … …

27 (8, 12) L1 L2Ga L3
Here it is clear that L2Ga consumes two L2 bits; the Index increments only once, and (more obviously than
in the previous example) only one L3 bit is consumed.

