

[image: image1.png]

 DZero Note #5520
AFEII-t Data Readout Format
V1.2

Date:
6/1/2007

Modified: 11/5/2007

From:
Paul RUBINOV for the Fiber tracker group
RE:
New Readout format for AFEII-t, including timing and amplitude

Background

This note describes the current and proposed future scheme for packing AFEII-t data for readout. In fact, the AFE boards (both AFE1 and AFEII-t) feature two readout buses: a 40 MByte/s 8bit parallel bus which is used to send ADC information after a L1 accept has been issued to the detector by the trigger system and a 530 MByte/s LVDS bus used to send discriminator data to the Central Track Trigger (CTT) components of the trigger every crossing. Unfortunately, due to the architecture of the trigger system, the high speed LVDS bus is not available for readout of the data for off line analysis. Data that is available off line must be read via the 40 Mbyte/s “gray cable” bus. From now on, this note will discuss only this data.

The current AFEII-t readout scheme is designed to match the AFE1 readout format for compatibility. This means that when installing AFEII-t boards, any software that uses the data from the board does not need to know if the data came from an AFE1 or an AFEII-t board. The data contains the digitized value of the hit amplitude for those channels that are above threshold. Channels with a digital value below some readout threshold are “zero suppressed” and not read out. However, the AFEII-t has a feature which the AFE1 does not: the ability to measure the time of charge arrival, relative to the crossing clock. This additional data does not fit neatly into the AFE1 readout format.

Current format

The readout scheme for the gray cable is designed to reduce the data size of the readout from a given board of 512 channels. The current format consists of a pair of bytes, one dedicated to the channel address, followed by a data byte. The address byte is necessary because the data is zero suppressed, and some indication of which channel the data represents is required. The standard format for the analog data is also grouped by module, with 64 channels per module and 8 modules per board, with a special separator that identifies the module within a board. For symmetry this separator also consist of two bytes: the “Chip ID” byte and the “zero” byte. To be able to distinguish the separator from the usual channel address byte, the “Chip ID” always has the most significant bit set, while the channel address, since it needs to identify at most 128 channels, never has the most significant bit set. This format is shown in Table 1.

In addition, the AFE boards are also part of the L1 trigger system, providing one discriminator bit for every channel (for CFT axial boards) to the trigger every crossing, and since the trigger system itself does not record this raw information, the AFE packs a copy of this information into the data stream for L3 readout in a special block, distinct from the analog hit data. This discriminator hit block is packed into a format that is similar to the format that is used for the analog block. Like the analog block, it contains a “Chip ID” and the “zero” byte followed by alternating bytes of address and data. The block always consists of 64 bytes of address and 64 bytes of data (representing the 512 trigger bits). However, since this digital data is never zero suppressed, the address bytes would be entirely superfluous, if not for a restriction discussed below. The new format for the trigger data block is shown in Table 2.

New format

In order to take advantage of the timing capability of the AFEII-t, the timing information must be sent off-line via the gray cable, same as the amplitude information. Both are required, therefore the amount of data is doubled. To reduce the impact of this additional data on the readout time, and the data size for the detector, we propose a new, more efficient readout format for the data. We propose to change the format of both the analog data block and the trigger data block, but in fact these changes are independent and can be implemented separately, which should aid in testing and debugging. However, we expect both will be implemented in Dzero for normal operations. An additional restriction on the new format is imposed by the nature of the optical link between the Sequencer and the VRB and the method by which the Sequencer signals the end of readout to the VRB. The optical link between the and the VRB is 16 bits wide and is always running. The Sequencer simply transmits a series of “C0C0” or “C1C1” words on the link to indicate that its FIFO is empty (and therefore that there is no more data to be readout), and that means that the new readout format must be defined in such a way as to not inadvertently send data that the VRB could misinterpret to mean the end of readout. The new format accomplishes this by defining exactly the conditions for the VRB detecting the end of event signal and by formatting the data in such a way as to not allow this condition to be met except in the event of the actual “C0” or “C1” signal appended to the data by the Sequencer. The procedures for the VRB and AFE are listed below:
1) The VRB will look for a “C0” or a “C1” only in the upper byte (also known as the “address byte”) of the 16 bit data word. The VRB will never look in the lower, or “data” byte.

2) The VRB will look for a “C0” or a “C1” in the upper byte of the 16 bit data word only after the first 66 bytes (33 words). This allows the VSVX data to be packed without regard to the end of event marker.

3) For the data read out in the upper or “address” byte, if the 8 bit analog data internal to the FPGA contains a value of 0xC0 or grater, 0x02 is added to the value to form the output data. This means the values 0xC0 and 0xC1 never occur in the upper byte. If the internal data is 0xFE or 0xFF, the output value is 0xFF (in other words, the 2 is not added to the internal value if it would cause an overflow.)
4) To prevent the value of 0xC0 or 0xC1 from occurring in the CRC word (see below for a description of the CRC word) the MSB of the CRC word is always forced to 0 in the output.

The change will be implemented by new firmware in two separate FPGAs; new COLLECTOR firmware to implement the trigger block change, and new AFPGA firmware to implement the analog block change. The AFPGA firmware can be downloaded to the board remotely, but the COLLECTOR firmware requires a cable connection to the board.

The format for the analog block will still consist of data grouped by module, with the Chip ID byte and separating the modules, however, the channel address / data byte pairs will be replaced by amplitude data/timing data byte pairs. Since we still require indication of which channels are above zero suppression threshold, 4 additional 16bit words will be appended between the Chip ID/”zero” byte and the amplitude/timing data portions of each module. This section is called the “hit map” and allows the unpacker to associate the hit data with the correct channel. The channel number is implied by the position of the set bits in the hit map. As a toy example of the scheme, consider the case where first eight bits in the hit map are “00010000”. This would mean that only the fourth channel is hit. Exactly what channel address is associated with “the fourth channel” is a matter of convention that must be agreed on between the AFPGA firmware on the AFEII-t and the unpacker software. There are two different conventions that have been implemented- in one convention, the channel order is the same as in the original SVX on AFE1s. The most significant bit is the highest numbered channel. This is the same convention as used in the VSVX block. In the other convention, the order is the natural TriP-t order. This convention allows a small reduction in the digitize time. The default convention used on the platform will be the original, SVX order. The relationship between the two conventions is specified in Table 5. In either case, in order to avoid accidentally generating a pattern that the VRB can interpret as a end of event marker, the most significant bit of each of the words in the hit mask is never set, so there are only 15 valid bits in each of the 4 words. The other 4 bits needed for the hit mask are located in the lower nibble of the “zero” byte which follows the chip ID. These 4 words (and extra nibble) will indicate which of the 64 channels of the module have been “hit” for analog readout - replicating the same idea as when the trigger data block indicates which of the 512 channels have been hit for trigger readout. This format is shown in Table 3. This format, which we will refer to as the “hit map” scheme is a simple but efficient scheme for sending both amplitude and timing data. Although the new format is efficient, it achieves this efficiency by removing some of the redundancy implicit in the current format, and therefore suffers from the disadvantage that it is harder to detect a transmission error. In order to remedy this deficiency, the new format will include a 16 bit CRC word at the end of the data for each module. In order for the CRC to provide a useful data integrity check, the algorithm needs to be clearly defined. We hereby define that the CRC will be computed for each modules data independently, including the Chip ID/zero byte and the hit map words using the 16-bit CRC-CCITT specification as given in http://www.itu.int/rec/T-REC-X.25-199610-I/en. A general discussion of the CRC can be found Ref 1 and the CCITT.X25 is also discussed in Ref 2. Wikipedia also has an excellent description of the CRC in general and the CCITT.X25 in particular. The VHDL implementation is given in Appendix 1 of this note. When the CRC is output, the MSB (bit 15) is always made 0, in order to avoid a possible 0xC0 or 0xC1 in the upper byte, which the VRB can misinterpret as an end of event mark. Internally, however, the CRC is computed as a 16 bit word. The MSB is dropped only in the readout.
The trigger data block is modified by simply dropping the address bytes completely, as shown in Table 4. This packs the entire 512 bit trigger block into 64 bytes, which is the most compact possible packing. We suggest that the trigger block chip ID be used to identify the format of the data in the following way (this is not enforced by firmware, but is interpreted by the unpacker):

1. 0x8F: old format for trigger block, old format for analog block

2. 0x8E: old format for the trigger block, new format for the analog block (as in Table 3)

3. 0x8D: address bytes dropped from trigger block, old format for analog block

4. 0x9F: address bytes dropped from trigger block, new format for analog block with readout in SVX (old) order (as in Table 3)
5. 0x9E: address bytes dropped from trigger block, new format for analog block with readout in TriP-t order

All modules of a given board should be configured with the same firmware- either the new format or the old format. It is important to note that the firmware has no way to enforce this. However, the format of the trigger block is independent of the format of the analog block, and these can be mixed in any combination: old trigger block with new analog block; new trigger block with old analog block; or both old format; or both new format.

Table 1: Current format for analog data from each of 8 modules on AFE1.

	Byte number
	Byte name
	Comment

	1
	Chip ID
	Always has MSB set (0x80 to 0x87)

	2
	“Zero” byte
	 0x00

	3
	Channel address
	MSB never set

	4
	Channel data
	Gray coded amplitude value 0 to 255

	5
	Channel address
	Next non suppressed channel address

	6
	Channel data
	

	...
	
	

	2n-1
	Channel address
	

	2n
	Channel data
	

Table 2: Format for the trigger block of the AFE.

	Byte number
	Byte name
	Comment

	1
	0x8F
	Chip ID byte- always the same

	2
	“Zero” byte
	Used for diagnostic information

	3
	00
	Always 00

	4
	Channel hit data
	Data for first byte, first module

	5
	10
	Channel address byte- always the same

	6
	Channel hit data
	Data for first byte, second module

	7
	20
	Channel address byte- always the same

	8
	Channel hit data
	Data for first byte, third module

	9
	30
	Channel address byte- always the same

	10
	Channel hit data
	

	...
	
	

	19
	01
	

	20
	Channel hit data
	

	21
	11
	

	22
	Channel hit data
	

	2n-1
	ij
	Channel address for (i+1)th module, (j+1)th byte

	2n
	Channel hit data
	Data for (i+1)th module, (j+1)th byte

	...
	
	

	127
	67
	

	128
	Channel hit data
	Data for last byte, next to last module

	129
	77
	

	130
	Channel hit data
	Data for last byte, last module

Table 3: Proposed new format for AFEII-t analog data block.

	Byte number
	Byte name
	Comment

	1
	Chip ID
	Always has MSB set (see text for suggested IDs)
	Ch #

	2
	Zero byte
	From “0x00” to “0x0F”: bit map of the first 4 chan
	[63..60]

	3
	Hit map byte 1
	Bit map of next 7 channels (MSB is never set)
	[59..53]

	4
	Hit map byte 2
	Bit map of next 8 channels
	[52..45]

	5
	Hit map byte 3
	Bit map of next 7 channels (MSB is never set)
	[44..38]

	6
	Hit map byte 4
	Bit map of next 8 channels
	[37..30]

	7
	Hit map byte 5
	Bit map of next 7 channels (MSB is never set)
	[29..23]

	8
	Hit map byte 6
	Bit map of next 8 channels
	[22..15]

	9
	Hit map byte 7
	Bit map of next 7 channels (MSB is never set)
	[14.. 8]

	10
	Hit map byte 8
	Bit map of next 8 channels
	[7.. 0]

	11
	Channel amplitude
	Amplitude for first non zero suppressed channel
 (this value is never C0 or C1, but can be anything else)

	12
	Channel timing
	Timing value for first non zero suppressed channel

	13
	Channel amplitude
	Amplitude for second non zero suppressed channel

	14
	Channel timing
	Timing value for second non zero suppressed channel

	...
	
	

	2n-1
	Channel amplitude
	Amplitude for last non zero suppressed channel

	2n
	Channel timing
	Timing value for last non zero suppressed channel

	2n+1
	CRC MSB
	Most significant byte of the CRC, most significant bit always 0

	2n+2
	CRC LSB
	Least significant byte of the CRC

Table 4: Proposed new format for AFEII-t trigger data block.

	1
	Chip ID
	Chip ID byte- always the same (MSB set)

	2
	“Zero” byte
	Always “0x00”

	3
	Channel hit data
	Data for first byte, first module

	4
	Channel hit data
	Data for first byte, second module

	5
	Channel hit data
	Data for first byte, third module

	66
	Channel hit data
	Data for last byte, last module

Table 5: Relationship between the AFE1 order and TriP-t natural order
	Read order on AFE1
	SVX CH NUM
	TRIPT0 in#
	TRIPT1 in#
	in clock #

	0
	10
	NA
	31
	31

	1
	11
	NA
	29
	29

	2
	12
	NA
	27
	27

	3
	13
	NA
	25
	25

	4
	16
	NA
	23
	23

	5
	17
	NA
	21
	21

	6
	20
	NA
	20
	20

	7
	21
	NA
	18
	18

	8
	22
	NA
	16
	16

	9
	23
	NA
	14
	14

	10
	26
	NA
	12
	12

	11
	27
	NA
	10
	10

	12
	28
	NA
	8
	8

	13
	29
	NA
	7
	7

	14
	32
	NA
	5
	5

	15
	36
	NA
	3
	3

	16
	37
	NA
	2
	2

	17
	38
	NA
	1
	1

	18
	41
	NA
	4
	4

	19
	42
	NA
	6
	6

	20
	43
	NA
	9
	9

	21
	46
	NA
	11
	11

	22
	47
	NA
	13
	13

	23
	48
	NA
	15
	15

	24
	49
	NA
	17
	17

	25
	52
	NA
	19
	19

	26
	53
	NA
	22
	22

	27
	56
	NA
	24
	24

	28
	57
	NA
	26
	26

	29
	58
	NA
	28
	28

	30
	59
	NA
	30
	30

	31
	62
	NA
	32
	32

Table 5 (continued): Relationship between the AFE1 order and TriP-t natural order
	32
	66
	1
	NA
	1

	33
	67
	3
	NA
	3

	34
	68
	5
	NA
	5

	35
	71
	7
	NA
	7

	36
	72
	9
	NA
	9

	37
	73
	11
	NA
	11

	38
	74
	14
	NA
	14

	39
	77
	16
	NA
	16

	40
	78
	18
	NA
	18

	41
	81
	20
	NA
	20

	42
	82
	22
	NA
	22

	43
	83
	24
	NA
	24

	44
	84
	27
	NA
	27

	45
	87
	29
	NA
	29

	46
	88
	32
	NA
	32

	47
	91
	31
	NA
	31

	48
	92
	30
	NA
	30

	49
	94
	28
	NA
	28

	50
	97
	26
	NA
	26

	51
	98
	25
	NA
	25

	52
	99
	23
	NA
	23

	53
	102
	21
	NA
	21

	54
	103
	19
	NA
	19

	55
	104
	17
	NA
	17

	56
	107
	15
	NA
	15

	57
	108
	13
	NA
	13

	58
	109
	12
	NA
	12

	59
	110
	10
	NA
	10

	60
	113
	8
	NA
	8

	61
	114
	6
	NA
	6

	62
	117
	4
	NA
	4

	63
	118
	2
	NA
	2

Appendix 1

The VHDL implementation for X25 specification for an 8 bit data width.

-- File: PCK_CRC16_D8.vhd

-- Date: Mon Jul 16 13:42:10 2007

--

-- Copyright (C) 1999-2003 Easics NV.

-- This source file may be used and distributed without restriction

-- provided that this copyright statement is not removed from the file

-- and that any derivative work contains the original copyright notice

-- and the associated disclaimer.

--

-- THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS

-- OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

-- WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

--

-- Purpose: VHDL package containing a synthesizable CRC function

-- * polynomial: (0 5 12 16)

-- * data width: 8

--

-- Info: tools@easics.be

-- http://www.easics.com

library IEEE;

use IEEE.std_logic_1164.all;

package PCK_CRC16_D8 is

 -- polynomial: (0 5 12 16)

 -- data width: 8

 function nextCRC16_D8

 (Data: std_logic_vector(7 downto 0);

 CRC: std_logic_vector(15 downto 0))

 return std_logic_vector;

end PCK_CRC16_D8;

library IEEE;

use IEEE.std_logic_1164.all;

package body PCK_CRC16_D8 is

 -- polynomial: (0 5 12 16)

 -- data width: 8

 function nextCRC16_D8

 (Data: std_logic_vector(7 downto 0);

 CRC: std_logic_vector(15 downto 0))

 return std_logic_vector is

 variable D: std_logic_vector(7 downto 0);

 variable C: std_logic_vector(15 downto 0);

 variable NewCRC: std_logic_vector(15 downto 0);

 begin

 D := Data;

 C := CRC;

 NewCRC(0) := D(4) xor D(0) xor C(8) xor C(12);

 NewCRC(1) := D(5) xor D(1) xor C(9) xor C(13);

 NewCRC(2) := D(6) xor D(2) xor C(10) xor C(14);

 NewCRC(3) := D(7) xor D(3) xor C(11) xor C(15);

 NewCRC(4) := D(4) xor C(12);

 NewCRC(5) := D(5) xor D(4) xor D(0) xor C(8) xor C(12) xor C(13);

 NewCRC(6) := D(6) xor D(5) xor D(1) xor C(9) xor C(13) xor C(14);

 NewCRC(7) := D(7) xor D(6) xor D(2) xor C(10) xor C(14) xor C(15);

 NewCRC(8) := D(7) xor D(3) xor C(0) xor C(11) xor C(15);

 NewCRC(9) := D(4) xor C(1) xor C(12);

 NewCRC(10) := D(5) xor C(2) xor C(13);

 NewCRC(11) := D(6) xor C(3) xor C(14);

 NewCRC(12) := D(7) xor D(4) xor D(0) xor C(4) xor C(8) xor C(12) xor C(15);

 NewCRC(13) := D(5) xor D(1) xor C(5) xor C(9) xor C(13);

 NewCRC(14) := D(6) xor D(2) xor C(6) xor C(10) xor C(14);

 NewCRC(15) := D(7) xor D(3) xor C(7) xor C(11) xor C(15);

 return NewCRC;

 end nextCRC16_D8;

end PCK_CRC16_D8;

References

1. http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
2. http://www.joegeluso.com/software/articles/
3. http://www.easics.com/webtools/crctool

1

2

